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                                                                Abstract 
We report results of the analysis of dynamics of fluxons (topological solitons, alias 
kinks) in the system of three long Josephson junctions between three bulk 
superconductors which form a prism. The system is modeled by coupled sine-Gordon 
equations for phases of the junctions. The relation for the flux trapped inside the prism 
reduces the system from three equations to two. They include dissipative terms, and are 
controlled by the frustration parameter, which measures the deviation of the trapped flux 
from half a quantum. Analyzing the effective potential of the coupled equations, we 
identify different species of kinks and nontopological "bubble" modes in this system. 
Solutions for compound kinks and for two types of the bubbles are obtained in an 
explicit analytical form. Numerical tests demonstrate that the compound kinks are 
unstable against breakup into pairs of separating simple kinks. The bubbles feature 
metastability, eventually breaking up into kink-antikink pairs. Kinks which connect 
different potential minima and are, accordingly, pulled by the potential difference, are 
considered too. Using the momentum-balance method, we predict the velocity at which 
these kinks should move in the presence of the dissipation, Numerical tests 
demonstrate that the analysis predicts the velocity in a virtually exact form. Inelastic 
collisions between the moving kinks are studied too. 
 
The work has been conducted in close collaboration with Dr. Stanford Yukon of 
Division of Electromagnetic Technologies, USAF Research Laboratory, Hanscom 
AFB, MA 01731, USA. In particular, I was responsible for the analytical part of 
the work, while numerical calculations have been chiefly carried out by Dr. Yukon. 
The following text is a preprint of a paper summarizing results produced by the 
work on this project. The paper, to be co-authored by S. Yukon and B. A. 
Malomed, will be submitted to Phys. Rev. B. 
  
 
PACS numbers: 74.81.Fa; 74.50.+k; 03.75.Lm; 05.45.Yv 
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1.Introduction 
 
     The dynamics of topological phase solitons, which represent quanta of the magnetic 
flux, i.e., fluxons, in long Josephson junctions (thin dielectric layers separating two bulk 
superconductors) has been a subject of many experimental and theoretical works 
published in the course of more than 30 last years – see, e.g., original papers [1-5] and 
reviews [6,7]. A fundamental model of the fluxon dynamics is based on the sine-Gordon 
equation with additional terms which account for various physical effects, such as 
dissipation and driving fields [1,5]. Similar extended versions of the sine-Gordon 
equations apply to the description of a number of other physical media, such as charge-
density waves in chain conductors, dislocations in crystals, etc.  [6,8]. In the field of the 
Josepshon physics, a great deal of attention was attracted to the study of diverse 
aspects of the fluxon dynamics in coupled parallel junctions [4]. In particular, shuttle 
oscillations of many-fluxon complexes may find an important application to the 
generation of coherent THz radiation [9]. Commonly adopted models for coupled 
junctions are based on systems of sine-Gordon equations coupled by terms which 
account for the magnetic interactions between parallel layers [4,6,7,9]. 
  
     Most works dealing with fluxons in coupled junctions considered pairs of parallel 
junctions or multi-layer stacks [4,9]. Another fundamentally interesting configuration is 
the one in which three bulk superconductors are put together to build a prism, which 
gives rise to a symmetric triangular set of three Josephson junctions emerging at 
interfaces between the superconductors [5,10]. An essential peculiarity of this setting is 
that the prismatic structure may trap magnetic flux, which strongly affects the dynamics 
of phase solitons in the triangular Josephson set. The dynamics features a degeneracy 
when the trapped flux is exactly equal to half a quantum. Then, a small deviation of the 
trapped flux from this special value plays the role of frustration which lifts the 
degeneracy. 
 
     It is relevant to mention that symmetric triangular sets of coupled nonlinear 
dynamical elements occur in other areas, where specific features of symmetric and 
broken-symmetry states in such setting have been studied in some detail. These 
systems include sets of three effective potential wells for light beams in photonic media 
[11], Bose-Hubbard systems with three sites [12], quantum phase transitions and 
Josephson oscillations in sets of three coupled potential wells [13], and nonlocal 
interactions in dipolar Bose-Einstein condensates (BECs) loaded into a set of three 
potential wells [14]. Symmetric and asymmetric states of interacting solitons in three-
core systems were studied too, including a triangular configuration of linearly coupled 
parallel fiber Bragg gratings [15], coupled triplets of Gross-Pitaevskii equations with 
applications to the description of three-component BEC [16], and dissipative solitons, 
including vortices, in a symmetric system of three linearly-coupled complex Ginzburg-
Landau equations [17]. 
 
     Our objective in this work is to develop a systematic analysis of the phase-soliton 
dynamics in the system of three coupled long Josephson junctions, using the model 
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derived in Ref. [5]. In Section 2, we start by introducing the model (due to the constraint 
imposed by the trapped magnetic flux, the respective system of three coupled sine-
Gordon equations is reduced to two) and analyzing various types of static kinks, which 
may exist in this system as stationary solutions connecting local minima or saddle 
points of the corresponding effective potential in the plane of two phase variables. The 
static kinks (fluxons) of two essentially different types are possible in the system, 
"simple" and "compound" ones, which correspond, respectively, to the 2π  steps in one 
or both independent phases. A solution for the compound kink is found in an explicit 
analytical form for arbitrary values of frustration parameter. Further, direct simulations 
demonstrate that the compound fluxons are unstable: the evolution leads to their 
spontaneous breakup into a pair of separating simple fluxons, while the simple fluxons 
themselves are completely stable topological solitons. The possibility of the splitting of 
the compound kink into the pair of simple ones can be readily explained by comparison 
of their energies.  
  
       The structure of the model also admits solutions of another type, in the form of 
"bubbles", i.e., soliton-like modes built on top of a constant background, with zero 
topological charge. Two analytical solutions for the bubbles are found in Section 3. The 
simulations demonstrate that the bubbles are metastable modes, which persist for a 
relatively long time, but eventually break up into pairs of separating kinks. 
 
       The same system gives rise to kinks of a different type, which connect backgrounds 
with different energy densities, which correspond to deeper and shallower potential 
minima, alias a "true vacuum" and a "false" one. In the conservative system, the 
potential tilt makes the existence of such kinks in a steady state impossible. However, in 
the presence of the dissipation terms, the balance of the driving potential force and 
dissipation-induced friction creates kinks (alias shock waves, in this context) traveling at 
the corresponding equilibrium velocity. In Section 4, we find this velocity in an analytical 
form, using the momentum-balance analysis [1,5]. The result is found to be in a 
practically exact agreement with numerical findings (and the traveling kinks are found to 
be completely stable). Continuing the work with the moving kinks, in Section 5 we study 
collisions between them, by means of direct simulations, which demonstrate that the 
collisions are strongly inelastic; in particular, some colliding pairs annihilate into 
persistent quiescent breathers. The work is concluded by Section 6.   
 
2. Kinks connecting true vacuums 
 
    The system that we investigate here is formed by coupling three long Josephson 
junctions such that each one shares a common superconductor with its two neighbors. 
In the usual notation, the generalized sine-Gordon equations for the phases of the three 
junctions (jumps of the phases of the wave function of superconducting electrons across 
each junction), including the Ohmic losses with coefficient α , can be written as [5,10] 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 2 1 2

2 2 2 2 1 1 2

2 1sin sin sin 0,
1 2 1 2

2 1sin sin sin 0,
1 2 1 2

tt xx t

tt xx t

φ φ α φ φ φ φ φ δ
η η

φ φ α φ φ φ φ φ δ
η η

− + + + + − + =⎡ ⎤⎣ ⎦+ +

− + + + − − + =⎡ ⎤⎣ ⎦+ +

                     (1)              

 
where it is assumed that the ratio of the capacitance per unit length of the third junction 
to that of the other two junctions is η , and, simultaneously, the same ratio for the 
inductance per unit length is 1/η  (these assumptions make it possible to account for the 
possible difference in characteristics of the three junctions, while keeping equal Swihart 
velocities in them). System (1) contains only two equations, because, in the limit of zero 
transverse inductance, the phase of the third junction is determined by the constraint 
imposed by external flux Φ  trapped in the system, 3 1 2φ φ φ φ= − − , where 

02 /φ π π δ= Φ Φ ≡ +  is the phase corresponding to the external flux, 0Φ  is the flux 
quantum, and parameter δ , which accounts for the deviation of the trapped flux from 
half the quantum, determines the system's frustration.   
     The energy conserved by system (1) in the absence of the dissipative terms ( 0α = ) 
is 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) }

2 22 2 2 2
1 2 1 2 1 2 1 2

1 2 1 2

1
2

cos cos cos ( ) ,

t t t t x x x x
E

dx

φ φ η φ φ φ φ η φ φ

φ φ φ φ δ

+∞

−∞

⎧ ⎡ ⎤= + + − + + + −⎨ ⎢ ⎥⎣ ⎦⎩

− − + − − − ∞

∫
C

               (2)  

 
where ( )∞C  stands for the value of the combination of the three cosines at x = ±∞  (the 
subtraction of this constant terms secures the convergence of the integrated energy 
[10]). Below, we will also need an expression for the momentum of system (1), which is 
also conserved if 0α = : 
 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1 2 3 3 3

1 1 2 3 1 2 2 11 1 .

x t x t x t

x t x t x t x t

P dx

dx

φ φ φ φ η φ φ

η φ φ η φ φ η φ φ η φ φ

+∞

−∞

+∞

−∞

⎡ ⎤= − + +⎣ ⎦

⎡ ⎤≡ − + + + − −⎣ ⎦

∫

∫
                  (3) 

        
         The potential part of energy (2) is 
 
                                    ( ) ( )1 2 1 2 1 2, cos cos cos ,V φ φ φ φ φ φ φ= − − − − −                             (4) 
 
which is plotted, in the plane of ( )1 2,φ φ , in Fig. 1 for frustration 0.1δ π= .  When 0δ = , all 
local minima of the potential have equal depths, and thus represent "true vacuums" of 
the system. In this case, the stationary version of Eqs. (4) gives rise to kink solutions 
that connect these minima. The kinks at 0δ =  feature the fractional flux content, that 
appears in multiples of 0 / 3Φ  [5].  When 0δ ≠ , the potential minima that are labeled {A, 



Nonlinear Dynamics of Globally Coupled Sine Gordon Equations  

 

B, .... G} in Fig. 1 are the true (lowest-energy) vacuum states, while shallower minima, 
with a higher potential energy, that are labeled {a, b, .... g}, may be called "false vacuum 
states". Symbols μ  in Fig. 1 mark saddle points of the potential.    

 
 
 
(Color online) Fig. 1.  Contour plots of potential function (4) with labeled minima and  
saddle points, for 0.1δ π= .  
     The values of the coordinates at minima and saddle points of potential ( )1 2,V φ φ , 

( * *
1 2,φ φ ), are found from equations 1,2/ 0,V φ∂ ∂ =  i.e.,  

 

                                              
( ) ( )
( ) ( )

* * *
1 1 2

* * *
2 1 2

sin sin 0,

sin sin 0,

φ φ φ δ

φ φ φ δ

− − − =

+ − − =
                                       (5) 

                                      
                                                                        
which yields 
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( ) ( )
( ) ( )

*
1

*
2

(1/ 3) 2 2 ,

(1/ 3) 2 1 ,

n m

n

φ π δ π

φ π δ π

= + + +⎡ ⎤⎣ ⎦
= − + + +⎡ ⎤⎣ ⎦

                               (6) 

 
 where n  and m are arbitrary integers. In particular, for /10δ π=  Eqs. (6) give rise to 
the grid of minimum points displayed in Fig. 1, namely, point A for m = 1, n = 0: 
 

                                         ( ) ( ) ( )* *
1 2

1, , 0.942,0.942
3

φ φ π δ π δ= − + − → − ,                     (7) 

                    
and point b for m = n = 0: 
 

                                            ( ) ( ) ( )* *
1 2

1, , 1.151,1.151
3

φ φ π δ π δ= + − − → − .           (8) 

                    
All other minima may be found by adding or subtracting multiples of 2π  to points (7) 
and (8). Further, the saddle point uAb marked in Fig. 1 has coordinates ( ) ( )* *

1 2, ,φ φ δ δ= − , 
from which all other saddle points can be obtained by adding or subtracting multiples of 
2π . 
 
        Static kink solutions connect adjacent minima of the potential with equal depths, 
shifted by 2π  in either or both directions (for instance, simple kinks may connect points 
A and C or C and B in Fig. 1, while a "compound" kink links points A and B in the 
diagonal direction). For these solutions, the stationary version of Eqs. (1) reduces to the 
equations of motion for a test particle with two degrees of freedom, ( )1 2,φ φ  and unit 

mass, in the pseudo-potential ( ) ( )1 2 1 2, ,U Vφ φ φ φ≡ − , with coordinate x  playing the role of 
time. In the rest of the paper, we focus on the most fundamental case of 1η =  in Eqs. 
(1).  
 
       For the "compound" kink solution connecting points A and B, and passing through 
saddle point uAb and the shallower minimum b, one can set 1 2φ φ= . After simple 
manipulations with the resulting mechanical equation for the single remaining degree of 
freedom, the kink solution, ( )xφ , can be found in an explicit form: 
                                        

( ) ( )
( ) ( )

2 / 3 2 /2 3 2
1

AB /2 3 / 3

4 4 | |
, 2 tan .

2 2

x x
r r r r r

x x
r r r r

a c e c a c e a
x

a c e a c e

α α

α α

α α
φ δ

α α α α α α
−
⎧ ⎫− − −⎪ ⎪= ⎨ ⎬
⎡ ⎤ ⎡ ⎤− + − − − −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

             (9)                               

 
The constants here are defined via roots 1,2,3,4t  of the quartic polynomial which emerges 
in the course of the integration of the equation for the kink's shape,  
 
                                                 2 3 4

0 1 2 3 4 0a a t a t a t a t+ + + + = ,                                   (10) 
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with ( )1tan / 2t φ≡ , and the coefficients determined by values of frustration δ  and 

effective energy, ( )1 1 16 ( ) 2cos cos 2E U φ φ φ δ≡ ≡ − − ,  taken at the points connected by the 
kink solution: 
 

                                                            

0

1

2

3

4

2 cos ,
4cos ,
2 6cos ,

4sin ,
2 cos .

a E
a
a E
a
a E

δ
δ

δ
δ

δ

= − +
=
= −
= −
= + +

                                           (11) 

 
Namely, 1 3Re( ), ,r r ia t t c ic≡ ≡ +  and ( )2 2

42 | |r r ra c c aα α≡ − + . An example of the kink 

solution is displayed in Fig. 2 for 0.1δ π=  (it is relevant to mention that this solution is 
different from those derived in Ref. [18] for an "asymmetric" double sine-Gordon 
equation).             

              
 Fig. 2.  (Color online). The plot of the "compound" kink connecting potential minima A 
and B in Fig. 1, for 0.1δ π= .  The red and blue lines depict the completely coinciding 
analytical solution (9)  and its numerically found counterpart. 
 
       The next step is to simulate the evolution of the compound kink, within the 
framework of full equations (1), to test its stability. As shown in Figs. 3 and 4, the result 
is that the compound kink is unstable against numerical noise, eventually splitting into a 
pair of "simple" ones, which link pairs of points AB and CB in Fig. 1 (recall the 
compound kink directly connects A and B). Note that, unlike the exact solution (9) for 
the compound kink, explicit analytical solutions for the simple kinks are not available.  
         
        The secondary kinks produced by the breakup of the compound one separate, 
eventually coming to a halt due to the action of the friction terms, accounted for by 
coefficient α  in Eqs. (1). The breakup AB AC CB→ +  is additionally illustrated by Fig. 5, 
which shows the parametric dependence between components 1φ  and 2φ  in the initial 
and final states of the phase fields. 
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                                                               (a) 
  
 

 
                                                    (b) 
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Fig. 3.  (Color online) The plots of 1( , )x tφ  (a) and 2 ( , )x tφ  (b) for the unstable compound 
kink of type AB, splitting into simple ones of types AC and CB, for 0.1δ π=  and 
dissipation coefficient 0.04α = . 
 
 
 

                   
 
      Fig. 5.(Color online). Parametric plots in the plane of ( 1 2,φ φ ) illustrating the breakup 
of the compound kink, AB AC + CB. The blue straight line corresponds to the 
stationary configuration at t = 0; the broken red line shows the same, but at t = 200. 
 
      The possibility fo the breakup may be readily explained by the consideration of the 
system's energy (2). The substitution of the analytical solution (9) for the compound AB 
kink solution, and of numerical solutions for the simple AC and CB ones, into the 
integral in Eq. (2) yields the respective values of the energy (rest masses): 

AB AC,CB25.549, 9.527m m= = . The difference between them is a straightforward 
explanation to the feasibility of the splitting. 
 

3. Bubble modes 
 

    To get the bubble solutions, which seem as solitons set on top of a constant 
background, featuring identical values of the phases at x = ±∞  [19], we start from the 
false vacuum state (shallower minimum) b in Fig. 1, and allow the test particle to travel 
in the anti-diagonal direction, 1 2φ φ= − . The corresponding potential-energy profile is 
shown in Fig. 6. 
 

→

x 

φ1  

t 
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Fig. 6.  (Color online) The effective potential energy, ( )1U φ , corresponding to the test 
particle passing through point b in Fig. 1 in the direction of 1 2φ φ= − , for 0.1δ π= .  
 
        In terms of Fig. 6, a "larger" bubble corresponds to the motion from point b 
( 1 1.15φ = ) to 1 4.81φ =  and back, while the trajectories generating another, "smaller", 
bubble bounces back from 1 0.21φ = − . Obviously, the two bubble modes have opposite 
polarities (the sign of the deviation from the constant background, see also Fig. 7 
below). The corresponding differential equation for 1( )xφ  can be solved in an explicit 
form [cf. the above solution (9) for the compound kink)], yielding the following 
expressions for the "larger" and "smaller" bubbles:        
                                   

( ) ( )
( ) ( )

2 2 2 2 2
3 1 2 3 1 2 3 3 1 2 1 2 31

, 2 2 2
1 2 1 2 3

2 ( )
( , ) 2 tan ,

2 2

x x

L S x x

t t t e t t t t t t t t t e t
x

t t e t t t e

γ γ

γ γ

ρ ρ
φ δ

ρ ρ
−
⎧ ⎫⎡ ⎤− − ± − + + +⎪ ⎪⎣ ⎦= ⎨ ⎬

− + + − +⎪ ⎪⎩ ⎭

m
         (12)                         

where ( )( )( )3 1 3 2( ) (1/ 2) cos 2 / 3E t t t tγ δ δ⎡ ⎤= + + − −⎣ ⎦ , ( )( )3 1 3 2t t t tρ ≡ − − , with 

1,2,3t being the roots of polynomial (10), (11), as they were defined above. Examples of 
the "smaller" and "larger" bubbles with opposite polarities are displayed in Fig. 7 for 

0.1δ π= . 
                       

                   
                                                        (a) 
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                                     (b)                  
 
Fig. 7.  (Color online) "Smaller" (a) and "larger" (b) bubble solutions, with the opposite 
polarities, found at 0.1δ π= . 
 
     Direct simulations of Eqs. (1) demonstrate that the bubbles are metastable modes, 
which persist for ~60 time units, before the numerical noise breaks them up. The 
evolution of a smaller bubble is shown in Fig.  for a relatively high damping parameter, 

0.5α = .  The bubble's peak does not persist, relaxing back to to the level corresponding 
to the true vacuum state.  Thus, the bubble breaks up into kinks of types Ab and bA, 
that very rapidly reach their equilibrium velocities, which is considered in the next 
section, see Eq. (21). 
 

             
 
 

t 
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         Fig. 8. (Color online) The spontaneous breakup of the "smaller" bubble mode Sφ , 
see Eq. (12), at 0.5α =  and 0.1δ π= .  

 
       If the dissipation terms are absent, the smaller bubble breaks up into a pair of Ab 
and bA kinks, that move away from the origin at a velocity approaching the Swihart limit, 
along with excitations in a slower moving wake, see Fig. 9. 

                                
Fig. 9.  (Color online) The breakup of the "smaller" bubble mode, for the same 0.1δ π=  
as in Fig. 12, but without the dissipation ( 0α = ). 
 
 
       On the other hand, if the smaller bubble evolves with initial non-zero damping, 
which is then rapidly reduced to zero, the evolution proceeds differently, resulting in the 
formation of a persistent breather at the initial position of the bubble, see Fig. 10. 
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Fig. 10. (Color online) The evolution of the "small" bubble solution  for 0.1δ π= , with the 
damping switched off as ( )2( ) 0.4expt tα = − .  
 
   Finally, at values of the dissipation constant exceeding a certain critical value, 

cr 0.6α ≈ , the bubble's peak in the corresponding overdamped system collapses back to 
the spatially uniform false-vacuum state (shallower potential minimum), inhibiting the 
dynamics that would lead to the emergence of the lowest potential minimum, i.e., states 
in which the Ab and bA kinks expand, replacing false vacuum with the true one (not 
shown here in detail).  
 
     The "larger" bubble mode demonstrates a behavior very similar to that of its "smaller" 
counterpart, with the difference that its rest mass is larger, allowing for more energy to 
go into the wake left after the breakup of the original bubble.  When the damping 
coefficient is set to zero, the larger bubble also breaks up into a pair of Ab and bA kinks, 
that move away from the origin approaching the Swihart velocity, as shown in Fig. 11. 
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 Fig. 11. (Color online). The evolution of the "larger" bubble mode at 0α =  and 0.1δ π= .  
  
 
      There is another decay scenario for the larger bubble, which is not initiated by the 
numerical noise alone, but may be induced by a very small relative displacement (~10-4) 
of the 1φ  and 2φ  components. This is shown in Fig. 12, and additionally by means of the 

1φ   and 2φ  profiles at 80t =  in Fig. 13.  In terms of Fig. 1, the final state is a path that 
goes from b to G along a straight line, then to C (with a bowing out of the path toward B 
as it does so), and then back to b along a straight line. 
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                                                                       (a) 
 

 
                                                             (b) 
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Fig. 12.  (Color online) The evolution of components 1φ  (a) and 2φ  (b), corresponding to 
the second breakup scenario of the "larger" bubble, for 0α =  and 0.1δ π= .  
 
 

 
Fig. 13.  Profiles of components 1φ  and 2φ  (the top and bottom lines, respectively) 
emerging from the second breakup scenario for the "larger" bubble, at 0α =  
and 0.1δ π= . 
      
 
4. Moving kinks (shock waves) connecting true and false vacuum states 
 
 
   Kinks that connect true and false vacuum states, such as corresponding to 
combinations fA, Ab and bC in Fig. 1, interpolate between local potential minima of 
different depths, hence they will be accelerated by the corresponding tilted potential 
[2,6].  In the presence of the dissipation, which is accounted for coefficient α  in Eqs. 
(1), such kinks will be accelerated by the tilt until they reach an equilibrium velocity at 
which the tilt-induced pull is balanced by the friction force. These kinks, which may exist 
only in the moving form, may also be naturally considered as shock waves of the phase. 
 
    The equilibrium velocity can be predicted in an approximate analytical form by means 
of the momentum-balance analysis, similar to that performed by McLaughlin and Scott 
for kinks in the single dc-driven damped sine-Gordon equation [1,6]. To this end, the 
solution for the kink of the bA type (in terms of Fig. 1) may be taken as the solution 
available at 0δ = , with a shift to account for the difference in the boundary conditions: 
 
                                                              ( ) ( )0

1 1, , / 3,x t x tδ δφ φ δ== +                               (13) 
where the exact kink solution at zero frustration is 
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( ) ( )( )2

0 1
1

tanh / 8 1
, 2 tan

3

x vt v
x tδφ = −

⎡ ⎤− −⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

.                   (14) 

 
Here v  is the velocity ( 1v =  corresponds to the Swihart velocity), and   
 
                                           ( ) ( )0

1 2, ,x t x tδ δφ φ == − .                                                        (15) 
 
Note that the substitution of Eqs. (14) and (15) into expression (3) for the total 
momentum (with 1η = ), and subsequent expansion up to the linear terms in the limit of 

0v →  makes it possible to identify the effective mass of this kink in the case of 0δ =  
[5]: 
 
                                                    ( )6 2 1 3 / 9 3.355bAm π= − ≈ .                                (16) 

 
   The balance condition for momentum P  implies the equailibrium between the driving 
force, induced by the potential tilt, and friction force, induced by the dissipative term: 
 

                                                kink dr 0.dP P F
dt

α= − + =                                            (17) 

 
Recall that the general expression for the total momentum of system (1) is given by Eq. 
(3). The consideration of derivative /dP dt , in which the time differentiation is performed 
inside the integral expression (3), and the second time derivatives of fields ( )1,2 ,x tφ  are 
substituted according to Eqs. (1), makes it possible to identify the term corresponding to 
the tilt-induced driving force. Taking into regard the boundary conditions corresponding 
to the kink of bA type, after somewhat lengthy but straightforward transformations the 
driving force is cast into the following form: 
 
                                                   ( )dr 3 3 sin / 3 .bAF δ= −                                           (18) 
 
This force is balanced by the frictional force in Eq. (17) at the equilibrium value of the 
momentum, 
 
                                  ( )1

eq 3 3 sin / 3 .bAP α δ−= −                 (19) 
 
Finally, making use of the relativistic expression for the kink's momentum,                          
 

                                 eq 21

bA
bA m vP

v
=

−
,                             (20) 
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where the effective mass may be taken per Eq. (16), we obtain the final result for the 
equilibrium velocity of the moving kink: 
 

                           
( )22 2

3 3 sin( / 3)

27sin ( / 3)bA

bAv
m

δ

α δ
= −

+
 .     (21) 

 
 
      As a typical example of the corresponding numerical simulations of Eqs. (1), we can 
take the one for a moving bA kink at 0.1δ α π= = .  The kink, launched at 0t =  in the 
form of the explicit solution (14), (15) for 0δ α= = , attains the equilibrium velocity 

eq 0.4581bAv = − , while the analytical result for the same parameters given by Eq. (21) is 

eq 0.4579bAv = − . The simulations also demonstrate that the kink (shock wave) moving at 
the equilibrium velocity is completely stable. 
       
       The comparison of the shape of the numerical solution with its analytical 
counterpart (13)-(15), shown in Fig. 14, demonstrates a virtually ideal agreement, as 
well as for the equilibrium velocity. 
 

                         
  
  Fig. 14. (Color online). The analytical approximation for moving kink (13)-(15) (red) and 
its numerically found counterpart (blue), for 0.1δ α π= = . 
 

5. Collisions between moving kinks 
 
    Collisions can occur between any two moving kinks that share a common true- or 
false-vacuum background.  An example of the former type would be a collision between 
bA and Af kinks (in terms of Fig. 1), with the Ab-bC collision being an example of the 
latter. The tilt in the corresponding potential will act to propel the kinks so as to 
decrease the span of the false vacuum, simultaneously increasing the domain filled with 
the true vacuum.   
 



Nonlinear Dynamics of Globally Coupled Sine Gordon Equations  

 

      This also implies that the kinks in the bA-Ab configuration would move toward the 
boundaries, increasing the span of true vacuum between them, while the kinks in the 
Ab-bA state would move on the collision course, to decrease the span of false vacuum 
between them.  In the latter case, one may expect that the collision between the kinks 
will lead to their annihilation into a bound excited state, in the form of a (slowly 
decaying) breather.  To induce the kinks to move toward one another In the former 
configuration, it is necessary to boost them in directions that are opposite to those of 
their equilibrium velocities.  In that case, the kinks may rebound, simultaneously  
generating radiation, thus making the collision complex (if the damping is low). 
Examples of these two types of the collisions are presented below. 
 
    5.1. Collisions of kinks with false vacuums at domain boundaries 
 
    We first look at the simplest collision of this type, which is between the kinks of the bA 
and Ab types.  There are some practical constraints in carrying out the corresponding 
numerical experiments, the first of which is that the two kinks must be well separated 
initially.  Further, setting the two kinks far from each other initially means that they must 
be launched with sufficiently large velocities, so that they may collide before the tilt in 
the potential will reverse their trajectories, as mentioned above.  
 
     Another constraint for numerical simulations stems from the boundary conditions at 
edges of the integration domain, x L= ± .  Boundary conditions of two types have been 
employed in simulations of the collisions: the no-radiation constraint, 
 

                           
[ ]
[ ]

/  + / = 0,  - ,  

 /  - / = 0,  + ,
i i

i i

x t x L

x t x L

φ φ

φ φ

∂ ∂ ∂ ∂ =

∂ ∂ ∂ ∂ =
                 (22) 

 
and the zero-magnetic-field condition, 
         
                               [ ]/  = 0 at  . i x x Lφ∂ ∂ = ±                                (23) 
 
Since the no-radiation condition can still allow reflections of slowly moving disturbances, 
we have used, in most cases, a combination of the zero-magnetic-field condition with an 
absorber (a stripe with an artificially high damping coefficient, attached to each 
boundary). 
 
    The example of the collision shown below is for the bA-Ab configuration with a small 
damping coefficient, 0.02α = , and the same value of the frustration as used above, viz.. 

0.1δ π=   The initial field was taken as the joined pair of exact kinks for 0α δ= = , with 
the separation between them 02 30x =  and velocities 0.99v = ± . 
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as shown in Fig. 15. a typical result of the collision is displayed in Fig. 16. 
 

                                  
 
Fig. 15. (Color online) The initial bA-Ab  pair of boosted kinks, prepared for the collision: 
the 1φ  (blue, with the minimum at 0x = ) and 2φ  (red, with a maximum at 0x = ) 
components. 
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                                             (a) 

 
                                                 (b) 
Fig. 16. (Color online) (a) and (b): Plots of the evolution of fields 1,2 ( , )x tφ  in the course of 
the collision of the bA-Ab type, with initial inward velocities, 0.99v = ±  and damping 
constant 0.02α = . 
    
In the case of the bA-Af collision, the picture is essentially the same as in Fig. 16, with 
an obvious difference that component 2 ( , )x tφ in the Af kink makes an extra 2π  jump.  
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      When the damping coefficient is set to zero, 0α = , Fig. 17 shows that a long-lived 
breather can be excited at the origin by the annihilation of the colliding bA-Af pair (which 
is not the case for the bA-Ab collision). This outcome is possible because the difference 
between the b and f states in Fig. 1 is 2 2φ πΔ = .  

 
   Fig. 17. (Color online)  The plot of 1( , )x tφ  illustrating the formation of the breather 
following the bA-Af collision with initial inward velocities 0.99v = ±  and zero damping, 

0α = .  
 

5.2 . Collisions between traveling kinks with true vacua at boundaries 
  

       Finally, we consider the collision of the second type (as defined above), when the 
two kinks are supported by true vacuum states at the spatial boundaries, sharing a false 
vacuum state in the region between them.  An example is the collision between Ab and 
bC kinks, that are launched toward the origin at 0t =  and at the equilibrium velocities, 
see Eq. (21),  from  well-separated locations, as shown below in Fig. 18.   



Nonlinear Dynamics of Globally Coupled Sine Gordon Equations  

 

 
                                                       (a) 
                                              

   
                                                        (b) 
Fig 18.  (Color online) (a) and (b): Plots of 1( , )x tφ  and 2 ( , )x tφ  illustrating in the collision 
of the Ab and bC  kinks for 0.1α δ π= = , initially moving at the corresponding equilibrium 
velocities [see Eq. (21)], 0.4581v = ± . 
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As seen, this collision leads (quite naturally) to the fusion of the colliding kinks into a 
quiescent one of the AC type. For other pairs of moving kinks with the shared false 
vacuum initially located between them, the outcome is similar, also featuring the fusion 
into an immobile kink interpolating between two true vacuums. 
 
 

6. Conclusions 
 
      This paper reports results of the systematic analysis of the dynamics of fluxons 
(kinks) in the fundamental prismatic configuration formed by three bulk 
superconductors, which creates a set of three parallel long Josephson junctions at 
interfaces between them. The setting is described by a system of three coupled sine-
Gordon equations for the phases corresponding to each junction. In fact, the condition 
for the external magnetic flux trapped by the system reduces the model to two 
equations. The equations include the dissipative terms, and are controlled by the 
frustration parameter, that measures the deviation of the external flux from half a 
quantum. Analyzing the corresponding potential profile, we have identified different 
types of topological kink solitons, which correspond to fluxons, in terms of the coupled 
junctions. Nontopological "bubble" modes have been found too. Some solutions, 
including those for "compound" kinks and for two types of the bubbles, were obtained in 
an analytical form. Numerical simulations demonstrate that the compound kinks are 
unstable against breaking up into pairs of simple kinks. Bubbles are metastable objects, 
that eventually break up into kink-antikink pairs. The system also gives rise to kinks 
which connect different potential minima, hence they are pulled by the tilt of the 
potential. Using the momentum-balance method, we have derived the equilibrium 
velocity at which such driven kinks should move, and verified the prediction by 
simulations. Finally, collisions between the moving kinks were studied by means of 
direct simulations, which demonstrate that the collisions are always strongly inelastic.  
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